Supplementary Information for The Cytoplasmic Heme Binding Protein PhuS of *P. aeruginosa* is a Heme Oxygenase Titratable Regulator of Heme Uptake. ## Maura J. O'Neill and Angela Wilks* From: The Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201-1140. *To whom correspondence should be addressed: Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, HSF II, 20 Penn Street, Baltimore, MD 21201-1140. TEL: 410-706-2537. FAX: 410-706-5017. e-mail: awilks@rx.umaryland.edu Table S1. Bacterial strains and plasmids. | Strain | Description | Source or reference | |------------------------------|--|--| | E. coli
BL21(DE3) | F-dcm omp T hsd S(r_B m_B) $gal\lambda$ (DE3) | Stratagene | | P. aeruginosa
PAO1 | Wild type | ¹ Holloway BW, 1955 | | PAO1 ∆hemO | PAO1 hemO::aacC1 Gm | ² Oglesby-Sherrouse & Vasil, 2010 | | PAO1 ∆phuS | PAO1 Δphus | ³ Barker et al, 2012 | | Plasmids
MRL2 | Amp ^R ; pET-11a derivate harboring the rat liver outer mitochondrial membrane cytochrome b_5 gene encoding a water-soluble domain of the cytochrome b_5 | ⁴ Rivera et al., 1995 | Holloway, B. W. J Gen Microbiol **1955**, 13, 572-581. Oglesby-Sherrouse, A. G.; Vasil, M. L. PLoS One **2010**, 5, e9930. Barker, K. D., Barkovits, K., Wilks, A. J Biol Chem **2012**, 287, 18342-18350. Rivera, M.; Walker, F. A. Anal Biochem **1995**, 230, 295-302. 1. 2. 3. 4. Table S2. Primers and probes used in this study. ## <u>Primers and Probes</u> <u>Sequence</u> | bphO probe | 5'-/56-FAM/CCC GGC AGA TCG ACA GCC CC/3BHQ_1/-3' | |--|---| | bphO F primer | 5'-GCG CTG GCA GGA GTT TCT C-3' | | bphO R primer | 5'-ATC GAC GAA ACG AAA GGA ATG T-3' | | phuS probephuS F primerphuS R primer | 5'-/56-FAM/CTT TCG GCC GCC GCT TCG A/3BQH_1/-3' 5'-TGC CGA CGA ACA CCA TGA-3' 5'-TGG CGA CCT GGC GAA A-3' | | hemO probe | 5'-/56-FAM/TTC GTC GCC/ZEN/GCC CAG TAC CTC TTC CAG CAT/3IABlkFQ/3' | | ham O E primar | 5, 0, | | <i>hemO</i> F primer | 5'-TGG TGA AGA GCA AGG AAC CCT TC-3' | | hemO R primer | 5'-TGG TGA AGA GCA AGG AAC CCT TC-3' 5'-TTC GTT GCG ATA AAG CGG CTC CA-3' | Figure S1. Growth curves of wild type and mutant PAO1 strains in the presence of heme. Cultures were grown in M9 minimal media supplemented with (A) 0 μ M heme, (B) 0.5 μ M heme (C) 5.0 μ M heme. Growth curves for PAO1 (O), $\Delta phuS$ (\Box), hemO (\Diamond), and $\Delta phuS/hemO$ (Δ). Figure S2. Relative expression of the heme utilization proteins in the PAO1 $\Delta phuS$, $\Delta hemO$ and $\Delta phuS/\Delta hem$ strains compared to wild type. (A) PhuR, (B) PhuS, (C) HemO, and (D) BphO. RNA isolated from the indicated strains following 8 hours growth in media supplemented with heme as indicated was analyzed as described in the Methods. The data represents the standard deviation from at least three independent experiments in triplicate. p-values for the mRNA levels of the individual genes in the deletion strains were normalized to the levels in PAO1 where *p< 0.05, **p< 0.005 or ***p<0.001. **Figure S3. LC-MS/MS BVIX isomer fragmentation patterns for PAO1** Δ*phuS* **supplemented with 0.5 μM** 13 C-heme. (A) HPLC analysis of BV isomers following extraction from the extracellular media. BVIX isomer peaks as marked. *Indicates a non-BVIX contaminant; (B) MS/MS fragmentation of 13 C-BVIXα (red line) and 12 C-BVIXα (black); (C) MS/MS fragmentation of 13 C-BVIXδ (red line) and 12 C-BVIXδ (black); MS/MS fragmentation of 13 C-BVIXβ (red line) and 12 C-BVIXβ (black). LC-MS/MS was performed as described in the Methods with multiple reaction monitoring. Figure S4. LC-MS/MS BVIX isomer fragmentation patterns for PAO1 ΔhemO supplemented with 0.5 μM 13 C-heme. (A) HPLC analysis of BV isomers following extraction from the extracellular media. BVIX isomer peaks as marked. *Indicates a non-BVIX contaminant; (B) MS/MS fragmentation of 13 C-BVIXα (red line) and 12 C-BVIXα (black); (C) MS/MS fragmentation of 13 C-BVIXδ (red line) and 12 C-BVIXδ (black); MS/MS fragmentation of 13 C-BVIXβ (red line) and 12 C-BVIXβ (black). LC-MS/MS was performed as described in the Methods with multiple reaction monitoring. Figure S5. LC-MS/MS BVIX isomer fragmentation patterns for PAO1 ΔphuS/ΔhemO supplemented with 0.5 μ M 13 C-heme. (A) HPLC analysis of BV isomers following extraction from the extracellular media. BVIX isomer peaks as marked. *Indicates a non-BVIX contaminant; (B) MS/MS fragmentation of 13 C-BVIXα (red line) and 12 C-BVIXα (black); (C) MS/MS fragmentation of 13 C-BVIXδ (red line) and 12 C-BVIXδ (black); MS/MS fragmentation of 13 C-BVIXβ (red line) and 12 C-BVIXβ (black). LC-MS/MS was performed as described in the Methods with multiple reaction monitoring.